A New Approach to Geolocation

In our last post we discussed an interesting discussion on automated vehicles and work zones that took place as part of ATSSA’s Midyear meetings. Another automated vehicle presentation was made during ATSSA’s Sign Committee meeting. Mr. Jamie Retterath of Vergence Automation (https://vergenceautomation.com/ ) began by discussing the relative advantages and disadvantages of different kinds of sensors. He pointed out that no single device works best in all conditions. He suggested a combination of sensors and software is the best way to “see” in all conditions. The car’s software would then choose the sensor image with the most contrast and clarity.

But the most interesting part of his presentation was a way of positioning vehicles anywhere they travel and in any weather conditions. GPS is not accurate enough to guide vehicles by itself. And the geometry of the road changes frequently due to construction, variations in pavement markings, etc.

He called them fiducial signs, meaning points of reference. Even with a foot of snow, these signs would tell vehicles exactly where they were in relation to the road. A series of small signs, perhaps as small as 12” square, would be posted on both sides of the road similar to what’s shown in the photo above.

These signs would be posted in the digital map. Sensors would see the signs and triangulate their position from them. Anytime the road geometry was changed the next vehicles that drove that stretch would recognize the change and would send that data in to change the digital map. It is a simple and relatively inexpensive way to speed the adoption of autonomous vehicles.

We asked about work zones. Mr. Retterath said the first autonomous car to come across a closed lane would see the obstruction and drive around it.  Like other changes it encounters, the vehicle would report the closed lane and it would update the digital map in near real time. The same could be done for lane shifts, crossovers, or other geometric changes.

These signs would improve location accuracy and could help speed the adoption of autonomous vehicles, thus saving many lives. Its just a concept at this point, but it represents yet another clever way of moving Towards Zero Deaths.

 

Automated Vehicle Roundtable Held at ATSSA Midyear Meetings

The American Traffic Safety Services Association (ATSSA) recently concluded their annual Midyear meetings in Williamsburg, Virginia. Their Innovation Council met on August 23rd. But before the meeting began officially, they held a joint round-table discussion with members of the Automotive Safety Council. The ASC represents manufacturers of automotive safety system components including cameras, LIDAR, radar and other sensors.

The ASC led off by presenting a sort of Automotive Sensors 101 class that explained the different technologies, what they do well, and what they don’t do so well. This was a big help to ATSSA members who must design traffic control devices that these sensors will be able to “see” and react to in the very near future.

Cameras used for lane tracking look out about 500 feet on highways with a viewing angle of 40 to as much as 100 degrees. The viewing distance decreases on city streets while the viewing angle increases. As camera technology improves, they plan to hold the lane keeping range to 150m as there is little benefit to extending it. Instead they will widen the field of view to better detect pedestrians, balls rolling into the street, etc.

Cameras currently see black & white (gray scale) and red. White lane markings are much easier for cameras to see than yellow because white has far better contrast.

The ASC maintained (as we do) that digital maps must be updated in real time. Long term work zones are easy enough to include in digital maps. Short term work zones are more of a problem. And chip seals are the worst as they are short term AND include no pavement markings – just chip seal markers.

As we move from level 3 to 4 and 5 automotive system hardware won’t change much. It will probably decrease in price, but that’s all. Rather the system functionality and human-machine language will be the key differentiators. The algorithms used by the vehicle to decide what is important, what is not, and how the vehicle should react will constantly evolve and improve.

The ASC shared their market forecast for growth in the next few years. In 2020 the first level 5 vehicles will be sold. Level 2 (driver assist) vehicles will total about 13 million vehicles. By 2030 more than 90 million vehicles will have at least level 2 automation and level 5 will total nearly 3 million vehicles. But that means less than 5% of all vehicles on the road in 2030 will be level 5.

There are still very different approaches to level 3 automation. At level 3, vehicles will automatically center in their lanes, follow a route and stop when required. But unexpected conditions, such as work zones, causes the vehicle to return control to the driver. Some manufacturers see level 3 as a step toward levels 4 and 5. But others, especially Google, feel level 3 is dangerous and so will not produce cars requiring human control at any time. Level 3 peaks in 2025 at 2 million vehicles then drops as level 4 and 5 vehicles become more popular and available.

The ASC group told us control will be ceded in work zones. But how that will happen is not clear. Still, they agreed with us on the need for sufficient time for the driver to acclimate before having to make important decisions.

Once the ASC concluded their presentation, Scott McCanna of David Evans & Associates made a presentation from our industry perspective and asked several thought-provoking questions about work zones along the way.

When channelizing devices including cones, drums and delineators are used to redefine a lane, will device spacing become important for automated vehicles? Will we need to maintain some minimal spacing to hold CAVs attention? And what happens when one or two cones are knocked down? Will the automated vehicle become disoriented? Or revert to the old lane markings?

It was further suggested than CAV logic should see drums and cones as a higher priority when choosing a direction of travel than existing pavement markings. Drums, cones, etc. should indicate a change…perhaps one that automatically triggers driver control in the case of Level 3 CAVs.

The time went by very quickly and everyone agreed it was a great first step in building better understanding between our two industries. Future meetings are already planned to build on this and plan for our future.

 

FHWA Work Zone Data Initiative

We in the work zone traffic control world and specifically the work zone ITS world have long wrestled with how best to gather and evaluate work zone data. This has been a topic of discussion at conferences, peer-to-peer exchanges, and in DOTs nationwide. These systems are now providing a great deal of data and the FHWA feels it is time we settled on a standard approach to that data. In response, they have launched the Work Zone Data Initiative (WZDI).

The stated goals of the initiative are:

“To develop a recommended practice for managing work zone data.” And to “create a consistent language for communicating information on work zone activity across jurisdictional and organizational boundaries.”

They are working to develop a specification for work zone data that supports DOT efforts throughout the project and also allows some sort of standardized evaluation and comparison once that project is complete. They want the data to become more useful for project planning, for real-time traffic operations, and for post project analytics.

This is something our industry must be involved in. Please let us know if you are. But if you are not, please contact Todd Peterson, FHWA Work Zone Management Team Transportation Specialist to express your interest. His email address is Todd.Peterson@dot.gov .

 

USDOT has also announced a competition on Advancing Innovative Ways to Analyze Crash Data. They point out that most crash data (as well as work zone data) is siloed and made available only on an annual basis. By opening those sources of data up, DOT hopes to take advantage of new tools such as machine learning (see 4/10/17 post) to gain insights on ways we can reduce roadway fatalities.

This effort is not work zone specific, but could result in improvements that our past state and project specific analysis was unable to find.

National Dialogue on Highway Automation

Being the work zone data nerds that we are, we attended the National Dialogue on Highway Automation Workshop #2: Digital Infrastructure and Data held August 1st and 2nd in Seattle. The first workshop covered planning and policy. Workshop #3 focuses on freight. #4 is Operations and is held at the same time as the National Rural ITS meeting in Phoenix. The final workshop will be held late this year in Austin and will be more technical in nature as it covers infrastructure design and safety.

Each workshop includes a series of presentations followed by breakout groups where ideas are discussed and then shared with the larger group. The format works well and benefits from the input of a wide range of stakeholders.

You will be happy to hear that work zones came up early and often. In fact the opening comments used work zones as an example of the need for some sort of standardization as every agency now provides varying amounts of data, different types of data, different formats and a very wide range of detail. Another speaker called work zones the “low hanging fruit” for highway automation in general and data collection and dissemination in particular.

There were about 200 in attendance and maybe 30 raised their hands when asked who attended the Automated Vehicle Symposium last month in San Francisco. So, this was an almost entirely new group.

You should also know the FHWA is seriously committed to this process. They had 20 or 30 of their own people at this event running it, moderating the breakout sessions, and asking lots of questions.

There were a number of themes that jumped out at us. One was data quality and verification. The consensus was that state DOTs will probably have the responsibility of verifying data accuracy. But what that process might be is unclear. It will likely vary by data type. In our case it will probably come as a quality check after it is already posted. Work zone activity must be reported in real time to be actionable, so they will weed the inaccurate reports (and reporters) out after the fact.

Remarkably most in the room were well acquainted with the MUTCD. Multiple comments suggested that it needs to be revised to recognize automated vehicles. Some even suggested reducing the leeway states have in specifying sign formats, pavement marking details, etc. to create more consistent traffic control for CAVs. But later others pointed out this is unlikely to happen and the effort would be better spent doing this outside the MUTCD process, at least to begin with.

These two days were time well spent. If you are able, we strongly encourage you to participate in one of their future workshops, especially the event in Phoenix. It will be focused on traffic operations. But because it will be held in conjunction with the NRITS show, it will also spend more time on automated vehicles and rural roads.  Learn more HERE.

News from the Automated Vehicles Symposium

We just returned from the Automated Vehicle Symposium held annually in San Francisco. It has always been a wonderful venue for the exchange of ideas and concerns about automated vehicles. This year work zones and roadway safety infrastructure continue to make progress in the AV world. In fact, it is remarkable how the conversation has changed in a few short years. Three years ago, we told the automakers what they needed to understand about work zones. It was a major epiphany for them. Last year we offered a way to report work zones in real time. This year the discussion focused on the tools available and how best to use them.

Breakout Session # 32 titled “OEM/DOT Dialog on Dedicated Lanes, Work Zones, and Shared Data” was broken into those three topics. They were all worthwhile but in the interest of time we will focus on the work zone portion here. The focus of the session was real-time reporting of work zones to automated vehicles and digital maps.

Ross Sheckler of iCone started off by describing the tools that will make work zone reporting automatic and accurate – both in terms of location and time.

Paul Pisano of FHWA discussed the connected work zone grant. They are evaluating in-car traffic information. The study runs from May 2017 to March 2019. One of the desired outcomes of the study is to standardize work zone data elements. Every state, every practitioner, etc. has their own list and they have started the discussion of what should be on that list and how it should be formatted so that everyone can report things like work zones in the same way.

They plan to do this in two states: what they called a low-fidelity version and a high-fidelity version. The Low fidelity version will come first and includes the simplest of elements: GPS location, start and end dates, and some description of the work zone such as “right lane closed”. The later, high fidelity version will include detailed lane level mapping and much more.

Bob Brydia of TTI discussed his work with connected work zones on I-35 between Austin and Dallas. He collected data on each and every lane closure – 1,000s of them over the past few years. Each recorded lane closure included 60 fields to describe each closure. That’s a lot! But OEMs have told him they want much, much more!

In a related topic it was pointed out that in the recent federal RFI on connected vehicles, two different US automaker trade associations said they want a universal work zone database! So, we all see the need. Its just a matter of deciding what it should include, as Paul described earlier.

Bob Brydia says they currently send work zone data out as traffic info to help drivers. But eventually this will become more of a traffic operations function. CAVs will use this info to automatically reduce delays and speed travel times.

It was a great session, as always, and we look forward to more dramatic progress next year.

 

The State of the Work Zone ITS Industry – 2018

We just enjoyed the 4th of July holiday. As we sat on the deck consuming bar-b-que and adult beverages we considered the state of the work zone ITS industry. We really have come a long way in the past year and that deserves recognition and a quick look back.

One of the most important and most overlooked recent changes is the blurring of the lines between the permanent ITS infrastructure world and the work zone ITS world. At last month’s ITS America show in Detroit, HERE demonstrated their new ability to incorporate live data feeds from work zones along with their partners including software provider GEWI and work zone ITS supplier iCone.

Waze is also incorporating real-time work zone data feeds in their traffic reporting. Both traffic data providers understand the importance of immediate and accurate work zone reporting and are working internally to make better use of our data.

This blurring is going the other direction as well, as Work Area Protection (formerly ASTI Transportation) now offers the option of including Iteris probe data in work zone travel and delay time calculations.

This blurring of the lines may be more important than we realize. Because it becomes less about us versus them for funding and more about an ITS system that works all of the time – especially in work zones. Work zones have always been an afterthought with ITS practitioners. But that is changing. They now understand that the single largest cause of nonrecurring congestion is work zones. And they are working to address that with their permanent systems.

In a recent article in Better Roads Magazine Frank Zucco of Wanco explained that work zone ITS is now much less expensive. Large, elaborate systems are still available and make sense for multi-year projects with major traffic impacts. But more and more simple systems are now being used for queue detection, trucks entering and dynamic merge applications. And, as Frank points out, those are now very dependable and inexpensive, making them a cost-effective solution for most projects.

Research now validates what we all knew intuitively. Queue detection, in particular, has shown major benefits according to the Texas Transportation Institute and AASHTO. We touched on this milestone two years ago in our post “The State of the Work Zone ITS Industry” published on 4/28/16.

And, lastly, work zone ITS helps facilitate the proliferation of automated and autonomous vehicles. Without real time reporting of work zones, AVs are left to navigate them on their own. And the AV world now understands that. We have become a part of the conversation. At the Automated Vehicle Symposium later this month in San Francisco sessions about work zones will be included for the third year in a row. See #33: “OEM/DOT Dialog on Dedicated Lanes, Work Zones and Shared Data” on July 11th. Autonomous vehicles are a big story that will only get bigger. Funding and research will flow to our industry as a result of these conversations.

As an industry, we aren’t yet to the point where our systems are used everywhere they could help. But we can finally see that light at the end of the tunnel.

FHWA’s National Dialogue on Highway Automation

Many thanks to Brian Watson of the American Traffic Safety Services Association for his recent email regarding the FHWA’s efforts to get road users involved in a discussion of the impacts and issues surrounding automated and autonomous vehicles. This is an important opportunity for those of us in work zone ITS to get involved. For that reason we have reprinted his email here:

I recently attended a webinar on the FHWA’s National Dialogue on Highway Automation. I have attached the link to the recorded session, and a background on the FHWA program below. Please note the five automation focus areas include many of the aspects of our industry. If you have any questions, or would like to get involved please let me know. The next meeting will take place in Detroit at ITS America in two weeks.

https://ops.fhwa.dot.gov/automationdialogue/index.htm

Background

Automated vehicles have the potential to significantly transform the nation’s roadways. They offer potential benefits in safety but also introduce uncertainty for the agencies responsible for the planning, design, construction, operation, and maintenance of the roadway infrastructure. The Federal Highway Administration (FHWA) is initiating a national conversation with partners and stakeholders to better understand the implications of highway automation to facilitate innovation and inform the Agency’s role in this area. This National Dialogue on Highway Automation represents a series of meetings held across the country to facilitate information sharing, identify key issues and prepare the infrastructure and the broader transportation community to safely and efficiently integrate automated vehicles into the road network. Input received during the National Dialogue will help inform national research, policy, and programs and will aid in the development of a national transportation community for automation.

This National Dialogue will engage an expanded set of stakeholders, beyond FHWA’s typical stakeholders, in order to ensure that this issue has broad input. These stakeholders will include but is not limited to original equipment manufacturers (OEMs), technology suppliers, transportation network companies (TNCs), associations, and public-sector partners.

The meetings will be held in different locations across the country, running from June 2018 through the end of 2018. These meetings will be conducted as 1 to 1.5 day events and generally include 100 to 150 participants. These meetings are meant to gather input and information from stakeholders and will include significant interactive components, such as breakout discussions and listening sessions.

Automation Focus Areas

  1. Planning and Policy: This focus area will explore relevant issues for the planning and policy community, such as travel demand changes from automation, land use implications, infrastructure funding, right of way use, transportation systems management and operations, automation legislation/policy and other topics.
  2. Digital Infrastructure and Data: This focus area will center on the data requirements and needs of automated vehicles (e.g., digital work zone maps, road closures, etc.). It will explore the possibility of developing new partnerships and collaboration between public agencies and industry for data sharing and safety.
  3. Freight: This focus area will deal with truck platooning applications and automated truck freight delivery issues. It will cover possible implications on traffic patterns and operations, as well as potential infrastructure considerations.
  4. Operations: This focus area will survey the range of operations challenges from highway automation and initiate a discussion on what further research is necessary to address them. These challenges may include incident management and system inefficiency which may have implications on traffic patterns and roadway capacity.
  5. Multimodal Safety and Infrastructure Design: This focus area will cover infrastructure requirements, standardization, and consistency for automation. It will highlight topics where automation technology developers and public agencies need collaboration to plan for locations where existing roadway infrastructure, road conditions, design features and environments could lead to potential safety hazards.