Distracted Driving and Work Zones

We all know that distracted driving is resulting in increased fatalities on our roadways. The National Safety Council reported a 6% increase in fatalities in 2016. According to the National Work Zone Safety Information Clearinghouse, overall roadways fatalities increased 13% from 2013 to 2016. And during that same period, work zone fatalities increased 28%!

We enjoyed a period of dramatic decline in these numbers in the early 2000’s and then in 2013 they suddenly began to climb again. A small part of that change was due to improving economic activity and the increase in vehicle miles traveled that came as a result. But far more is due to other factors and distracted driving certainly tops the list.

The National Safety Council reports that 47% of drivers feel comfortable texting while they are driving. But we know that, in fact, texting while driving often increases reaction times more than driving under the influence.

But the problem is bigger than just that. In a recent article by Dr. Carl Marci, a neuroscientist writing in the January 4th issue of Perspectives magazine (http://www.nielsen.com/us/en/insights/news/2018/perspectives-driving-while-distracted-the-challenges-of-measuring-behavior-in-complex-environments.html), he said that our cars may be contributing to the distracted driving problem as well! This question occurred to him driving home one night so he ran a test using standard bio-metric equipment on a short drive on an unfamiliar road in Boston. The results showed the driver looked at his or her phone 60 times during a ten minute trip! A study by Zendrive reinforces these findings. They found that drivers use their phones for 88% of their trips.

Dr. Marci explains this by examining the way we use our phones outside of our vehicles. Any time we are bored, we look at our phone. Sitting at home in front of the TV, standing on a street corner waiting for a bus, or sitting in slow a meeting at work – we all check our phones when we get bored. And then we are often rewarded for doing so with a response from others. Email and social media have changed the way we act in very profound and far-reaching ways. And that can’t be turned off when we get behind the wheel.

Furthermore, our cars are becoming very comfortable. They resemble our living rooms more every day. Elaborate electronics help guide us to our destination, provide entertainment, and interface with our phones calling and communications applications.

We do use our cars electronics and phones for legitimate reasons while driving. They give us directions to our destination. They warn us of traffic problems along our planned route. They tell us of weather changes that may be important. So our phones & automotive electronics can help us get where we are going more safely. But once we use these for legitimate reasons, we can’t put them down. Or our drive becomes boring or our phone beeps to announce a new text, and we can’t seem to wait until we stop to check those messages.

So, back to work zones. A 28% increase in work zone fatalities cannot be ignored. Distracted driving is a growing and potentially catastrophic trend for work zones. Work zone ITS has always helped to reduce crashes. But this trend in distracted driving makes the use of work zone ITS all the more important. End of queue systems, dynamic merge systems, and variable speed limit systems can all get drivers attention, improve their work zone awareness, and help mitigate the effects of distracted driving. Let’s get ahead of this trend now before it gets any worse.

The Importance of Crash Modification Factors to Work Zone ITS

A webinar was held December 5th on work zone crash data collection and analysis. It was organized by Wayne State University and included speakers from the University of Missouri and Michigan State University. A recording of the webinar will be made available soon.

Several very good resources were made available as the webinar began including “A Guide for Work Zone Crash Data Collection, Reporting, and Analysis” which was produced for the FHWA by the Wayne State University College of Engineering. This guide can be found at:  https://www.workzonesafety.org/files/documents/training/fhwa_wz_grant/wsu_wz_data_collection_guide.pdf

As a work zone ITS practitioner, I have deployed many systems over the years but have very little data to prove the effectiveness of those deployments. The problem has always been establishing a base line of the probable number of crashes given the traffic control, project duration, traffic volumes, etc. Only with that base line can we compare our actual crash numbers to determine whether the system was cost-effective.

The crash data guide states the problem very succinctly, “In order to perform an effective work zone safety analysis, the appropriate work zone crash data needs to be available. The availability of this data is only as good as what is collected on the state crash report form.”

The webinar pointed to several states’ best practices in this regard. At a minimum, states are required to include a checkbox on their form to indicate if the crash was work zone related. But states including Connecticut, Iowa, Minnesota, Pennsylvania and Virginia collect much more. They go into detail about the location of the crash within the work zone, and what types of traffic control and construction activity was in place at the time of that crash.

That data will help them develop Crash Modification Factors (CFMs) for different traffic control treatments. In time we hope to see CFMs for queue warning systems, dynamic merge systems, variable speed limit systems, and much more. Those CFMs could be specific to high volume multi-lane facilities, rural four lane highways, etc.

Once CFMs are developed, the rest of the process is fairly simple. Compare the CFM associated with your proposed system to the traffic volumes where that system will be used, and you will know immediately whether the use of that system is justified. The use of these systems is already taking off, but there is still some guess work involved in the decision to use or not use work zone ITS. By developing CFMs we could speed that process along and make it more scientific.

5G Cell Service and Opportunities for Our Industry

By now, most of you are aware that 5G phone service will be here soon. But you may not understand what that means for our industry. An article written by Hongtao Zhan of SureCall and published recently in VB talks about its potential:

https://venturebeat.com/2017/09/30/5g-isnt-just-faster-it-will-open-up-a-whole-new-world/

As the article points out, download speeds could be as much as 100 times faster than we currently experience with 4G service. This service will be expensive at first but once everyone has switched to 5G devices those faster download speeds could result in greater use of video as data rates eventually decline.

But the most important aspect of 5G for our purposes is latency. Latency is a measure of how quickly critical data is transmitted. 5G offers near zero latency. This will enable an incredible array of new technologies affecting every part of our lives. That is why “Qualcomm is calling 5G the “platform for invention.””

Mr. Zhan describes ways 5G could be used for things like haptic controls in vehicles for purposes such as lane keeping, collision avoidance and more. For our world haptic controls mean we could deploy “virtual rumble strips” in advance of work areas to wake up drivers and perhaps even to return control of autonomous vehicles over to drivers.

Zero latency means workers could be removed from the work area and could perform many dangerous operations remotely using a virtual reality head set and controls. For example, they could “drive” TMA trucks remotely. We might also create a remote control cone setting machine. Striping trucks and RPM installation might also be automated.

How about a phone app to warn workers? With near zero latency, we could create an intrusion warning system that works fast enough to save lives, while requiring very little in additional equipment – just the smart phones everyone is already carrying around. The work area could be delineated on a digital map and any vehicle crossing those lines would trigger warnings to anyone in the area who has downloaded the app.

The possibilities are endless and this new communications protocol is right around the corner. It is time for us to begin thinking about how we might use it to improve safety and save lives.

Work Zone Reporting to Autonomous Vehicles

We just returned from ATSSA’s Midyear meetings in Louisville, Kentucky. The Innovation Council meeting was well attended and included several very interesting speakers. Many topics were discussed but the real focus of these discussions, both during and after the meeting, was autonomous and automated vehicles and how our members can best prepare for them.

Speakers including Dr. Paul Carlson talked about the importance of signs and pavement markings bright enough to be seen and recognized by automated vehicles. AV manufacturers have stated that this is the most important thing we as an industry can do to prepare, at least from the autonomous vehicle perspective.

But from a stakeholders’ perspective – specifically work zone safety – many wonder how autonomous vehicles will know where work zones are located and what they will encounter as they drive through them. This blog has discussed this subject several times over the past few weeks, but given the interest in Louisville, it seemed a good time to review all of the likely ways in which this will be accomplished and consider the advantages and disadvantages of each.

There are at least 6 ways to do this. And by “this” we mean update digital maps in real time. First we must tell everyone where work zones are active. That’s the most important part. For by telling them, those autonomous vehicles can then trigger a return of control to the driver well before the vehicle enters the actual work zone. But ideally, these systems will also include information about that work zone including which lanes are closed, prevailing speeds, and geometric changes including lane shifts, narrow lanes, etc.

So, in no particular order, these are the more likely ways of getting that information out in real time:

Traffic Control Device Automated Reporting

Devices including arrow boards, traffic sensors, flashing beacons, and stop/slow paddles can be equipped to report to a traffic data service or DOT website. This is already being done today. When the device is turned on, it reports its GPS coordinates and the type of work zone. For example, an arrow board, when turned on would report a lane closure. When it is turned off, the device reports the work zone is no longer active.

The advantage of this approach is the activity is truly reported in real time without human input. Another advantage is the location will change as the equipment moves, say for a paving or crack sealing operation. The disadvantage is the need to replace older devices with newer devices that include this feature.

3M Two-Dimensional Bar Codes

This was the subject of a post on August 21st and was discussed by Chuck Bergman of Michigan DOT and Eric Hedman of 3M at the Innovation Council meeting. 3M has installed signs on I-75 in Michigan with two-dimensional bar codes embedded in their sign sheeting. A driver might see a sign saying ROAD WORK AHEAD but infrared cameras in the car would see a second embedded message telling the car to relinquish control to the driver, or to reduce speed automatically to 45 MPH, or any one of a number of other possibilities.

This approach will work well for longer term work zones and ones where the desired message is unlikely to change often. It will likely be low cost and could act as a fail-safe warning to autonomous vehicles. It does not update digital maps simply by installing the signs, but we assume that will be done manually at about the same time.

State DOT Work Zone Phone Apps

Many states require contractors to request lane closures in advance and then to report when those closures begin and end. Some now accomplish this through smart phone apps that make it quick and easy o report in real time.

This is already taking place but it does require someone to key in the closure when it begins and ends. And moving operations won’t be precisely geo-located. Still, it is inexpensive and requires very little effort.

Waze, HERE and other Crowd Sourced Traffic Apps

Users of these smart phone apps can note active work zones and other issues affecting traffic and that information is shared with all other users. This additional information is helpful but depends on users to remain current. Interestingly these apps are beginning to include data streams from work zone ITS systems. So the hybridization of these systems has already begun. And in our last post we noted that Caltrans traffic website known as QuickMap now includes Waze work zone data.

I2V (Infrastructure to Vehicle) Reporting via 4G/5G or DSRC

This was how we originally envisioned the process taking place. A radio of some sort might be installed in advance warning message signs or arrow boards where it would broadcast to approaching traffic to warn of upcoming work zones. These devices might also report slow or stopped traffic ahead. This may still happen, but advances in V2V (vehicle to vehicle) communications both 5G and DSRC make this less likely.

Automatic Reporting by Autonomous Vehicles

AV data collection will “see” and take note of variations of the real world roads from the digital map. This might include some standard deployment of devices in advance of work zones that could be recognized by algorithms to mean a work zone lies ahead.

This has not been suggested that we know of, but autonomous vehicles collect data continuously. That’s a lot of data. Machine learning and sophisticated algorithms will, in time, learn to recognize work zones. Logically those will then be reported automatically as work zones change. This may not occur for many years but it will happen automatically one day.

The change from driven to autonomous vehicles will be a very gradual one. Most experts believe it will take at least 25 years and even then older vehicles, collector cars, etc. will still be sharing the road with driverless ones. Furthermore, the choice of technology to warn of work zones will vary with location, construction activity, project duration, and more. As a result, differing combinations of technologies will likely be used in an effort to reach the greatest number of vehicles and to provide redundancy. After all, as time has proven over and over again, as cars become easier to drive, we become worse drivers. So it will be all the more important that we warn drivers and vehicles of work zones ahead.

Caltrans QuickMap to Add Waze Data

 

Caltrans recently announced changes to their popular QuickMap travel app. The app is available online at http://quickmap.dot.ca.gov/ and from your app store for both Apple and Android. In QuickMap users choose what they want to see, and the area they are interested in seeing, and a custom map shows them exactly that and no more. Travel times and factors affecting travel times such as work zones, weather and other incidents are all displayed in near real time.

They have now added an option to see Waze data. This is significant to those of us interested in work zone ITS because Waze displays iCone sensor data as work zone locations. For example, Road-Tech currently has an iCone system on SR99 in Fresno and the work zone is displayed in QuickMap with an icon of a worker in a hard hat:

Eventually these icons when clicked on will display detailed travel speeds and other pertinent information. That data will help drivers avoid delays and better plan their routes. And in Waze, drivers can add their own information on work zones, crashes and other incidents.

QuickMap is testing the next mobile version in which users can input their own Waze markers directly from QuickMap. It will be one more way to get real-time work zone information to the people that need it most!

Report from the Automated Vehicles Symposium, Part 2

In our last post we discussed the need recognized at the Automated Vehicle Symposium for varying levels of vehicle autonomy based on the road and current conditions. One of those conditions is clearly work zones. A car may be able to operate at Level 4 autonomy in freeway traffic, but may have difficulty ding the same in some work zones.

In those cases we must signal the vehicle to alert the driver to prepare to retake control. And that warning will have to be given leaving sufficient time for the driver to become cognizant of the dangers around his or her vehicle. A poster session at the AV Symposium by Chris Schwartz of the University of Iowa looked at that timing. Their study focused on large trucks and found drivers needed as much as 10 seconds to get their wits about them for normal driving. Work zones should probably allow a little more time, as drivers may have to start immediately to negotiate lane shifts, narrow lanes, or other challenges. So ideally this signal would come at about the first construction area sign (ROAD WORK AHEAD).

The conventional method would occur through the cars digital map. That will be how other hand-offs take place, such as when driving from a roadway capable of supporting level 4 automation to an older stretch only capable of supporting level 3. But those are points that rarely move or change. Work zones may only take place for a few days, or a few hours. As we have discussed in past posts, the map must be updated in real time for features like this to work correctly.

Manufacturers are working today on beacons, arrow boards, and more that will signal when lane closures begin and when they end. This is already happening today and will only become more popular as smart technology is accepted in more and more work zones.

But another option was mentioned in the same session. 3M is experimenting with a way of placing two-dimensional bar codes within their reflective sign sheeting. The bar codes are only readable by infrared cameras. Drivers would never see them. They would just see the static sign saying something like ROAD WORK AHEAD. But the car they are driving would be triggered to return control to the driver.

This technology is in the very early stages of testing. 3M has signs up on freeways in Michigan now and hopes to test more of them in the Bay Area of California soon. It is too early to say this is a solution but it does show promise. A combination of map triggers and these signs would provide some redundancy and might also be a simpler way of notifying drivers of very short term work zones such as those installed by utility companies and smaller agencies.

The good news is that both the traffic control industry and the AV industry recognize the importance of this hand-off prior to work zones and they are working to find solutions.

Variable Speed Limit Systems – Revisited

In a post on April 24th we discussed a recent webinar on variable speed limit signs. The speakers voiced their disappointment in the technology and found very little if any benefit from their use. But now a new study by the University of Missouri saw far better results for VSL signs used in work zones.

“Evaluation of Variable Advisory Speed Limits in Congested Work Zones” by Praveen Edara, Carlos Sun and Yi Hou found far better, but still mixed results when using Variable Advisory Speed Limit signs in work zones.

As we have known for some time, the VSL results depend to a great extent on the algorithm used. In the Missouri study the original algorithm used in the field resulted in shorter queue lengths and reduced speed differentials. In fact the maximum speed differential was reduced by a remarkable 10 MPH. However it also reduced throughput by 7 to 11% and travel time increased by 4 to 8%. So the results were mixed.

They then experimented through simulation. Using the same traffic data they tried two other algorithms. One smoothed over a one minute period and the other over a 5 minute period. The original field algorithm smoothed over a 30 second period.

The 5 minute smoothing algorithm still reduced throughput but only by about 1%. At the same time it reduced end of queue conflicts by 30% and lane changing conflicts by 20%. Speed variances remained low. And they saw medium to high compliance with these advisory signs.

Compliance is key, of course, and the Missouri experience was very different from previous installations in places such as Utah and Oregon. Even where VSL posted limits were enforceable, compliance only occurred when message signs explained the reason for the speed limit reduction or when law enforcement was present and actively enforcing those limits.

The reasons for this could be many. Maybe Missouri drivers are just more law abiding. It was not discussed in the study but perhaps MoDOT did a better job of explaining VSLs to the public before they were installed. Or perhaps the need for variable limits is more apparent to drivers in a congested urban work zone. But whatever the reason, it is clear we should not give up on variable speed limit systems just yet. More studies are needed, especially on the subject of the best applications for these systems and the algorithms driving them.