Google Maps are Wrong!

At any given time, perhaps 5% of Google Maps data is wrong. And the reason is simple. Construction traffic control requires contractors to close lanes, redirect traffic into oncoming lanes, or close roads altogether until the work has been completed. Those closures are reported to state and local agencies. And those reports are picked up by Google and other traffic data aggregators. But they are often wrong or out of date.

In most states, contractors are required to request permission to close a lane. That request must be made well in advance of the date on which they wish to close the lane, 7 to 10 days on average. By the time that day comes long, construction delays, weather, and other issues often postpone the work and the lane closure does not take place.

Contractors also often make several requests so they will have a multi-day window in which they can perform the work. The days they don’t work are called ghost closures. Some states have moved to eliminate ghost closures by requiring contractors to call the local traffic management center when the lane is taken and again when it is opened back up. This certainly helps, but it does not eliminate the problem altogether.

To make matters worse, many closures are never reported at all. Utility companies are notorious for closing lanes without permission. They reason that they are only there for a short time and so won’t affect traffic all that much. But as traffic becomes more dependent on accurate travel time and route information, any disruption causes problems, and may even be dangerous.

Incident response closes lanes; school crossing guards stop traffic; special events close roads and reroute traffic; flooding, fires and other environmental events also result in route closures and restrictions.

This is an important point of discussion in the automated/autonomous vehicle world, too. If autonomous vehicles depend on historic GPS data to plan and drive a route, they will run into unexpected construction. So they must decide how they will adapt to changes in geometry, in the number and location of lanes, and much more. And delays resulting from these closed lanes and detours should be measured and included in any travel time algorithms.

It is worth noting that the folks in the traffic data companies know of the problem but they can’t solve it on their own. Industry is beginning to fill this need. Arrow boards and flagger stop/slow paddles are being reinvented to become “smart devices”. They report in automatically when work begins and ends. And they also report their precise location. As the work moves, that is reported as well, so map data for work zones can now be reported in real time.

Much work remains to be done. But the solution to this problem is clear. The closures must be reported in real time from the field. And that includes any changes in geometry when lanes are temporarily shifted in one direction or another. Highway construction, incident response and special events all experience unexpected changes on a daily and often hourly basis. Maps must reflect those changes if our system is to be as safe and efficient as possible.

Sending Work Zone Warnings to Cell Phones

workzone-alertThe Minnesota Department of Transportation just released a study looking at one way of triggering in-vehicle messages in vehicles approaching work zones. The authors Chen-Fu Liao and Max Donath of the University of Minnesota tested the concept of sending low-energy BlueTooth messages to Android phones equipped with a custom app they call Workzone Alert.

The app triggers an audible, visible and/or tactile warning to the driver as he or she approaches a work zone. Drivers who are speeding can also be warned to slow down. And the app can even disable calling and texting while within the confines of the work zone.

Report 2016-38 entitled “Investigating the Effectiveness of Using BlueTooth Low-Energy Technology to Trigger In-Vehicle Messages in Work Zones” was published by the Minnesota DOT. You can download a copy HERE.

 

Their design worked well and proved that vehicles traveling at speeds of up to 70 MPH could receive warning messages as they approached a work zone.

We have talked about a future with DSRC “pods” transmitting to vehicles. We have also talked about those same DSRC devices attached to PCMS as a stop gap to reach all vehicles until nearly all are equipped with receivers. But a better way might be through 5G cell service as that is already available and in most vehicles.

These “BLE tags” use very little power so they could be attached to message signs or arrow boards without affecting the signs performance. When packaged with a small battery they could also be attached to a simple sign post or overpass.

The downside is the cell phones must currently be placed into a BlueTooth discover mode to find existing tags. This uses more power and results in reductions in charge life for the phones. But if this technology continues to show promise, the Android and iPhone operating systems could surely be changed to receive these messages in something similar to a discover mode but one that uses far less power when not receiving. The BLE tag locations are stored allowing phones to run Workzone Alert in background except when passing known tag locations.

They also attempted to make the technology easy to deploy. A second app was developed to make it easy for traffic control contractors to update the message that Workzone Alert displays for a specific BLE tag.

Work at the U of M continues. The current, second phase of research is looking at human-factors considerations for alerts. What wording and format should be used to get the best results? In the third phase they will look at how best to maintain the BLE tag database, who should be able to make changes, and if it is practical to tie this into 511, Waze or Google Maps. Stay tuned as this promises to develop quickly!

What Do Automated and Connected Vehicles Need to Know About Work Zones?

AUVS

On July 20th, Ross Sheckler of iCone made a presentation to the Autonomous Vehicles Symposium in San Francisco. The title of his presentation was “What Do Automated and Connected Vehicles Need to Know About Work Zones?” His message was very important. It was well-received by those in attendance, but the group that needs to hear this is many times larger than the 100 or so people in the room that day. So we will try to make his main points in today’s post.

Remember, most of the attendees were not work zone people, though a few of us were there that day. Most work for automotive manufacturers or component manufacturers. They produce navigation systems – some in use today and some that will guide autonomous vehicles in the future. Those cars will drive through our work zones, yet the folks who produce them know very little about temporary traffic control. So Ross began by pointing out that the map changes 1,000 times per day due to work zones. 1,000 times per day workers change the law, and 10,000 times per day warnings are posted. His point being, of course, that we must find a way to inform these systems.

Mr. Sheckler also explained that most closures are never reported. And of those that are reported, most don’t occur on the dates and times they are scheduled. He went on to say that the most dangerous closures are probably those unreported ones. He used the example of a short term utility closure on a rural road with bad line of sight.  The people doing that type of work often do not worry much about traffic control. They might place a 10 foot taper of cones and a ROAD WORK AHEAD sign, but even that is somewhat rare. Automotive systems must be able to recognize these work areas and react appropriately.

And when traffic control is reported, it only shows up in navigation apps as “roadwork”. It does not say it is a lane shift, or multiple lane closure sure to cause queuing. It does not say the entire geometry has changed by moving traffic over into the oncoming lanes separated by concrete barrier. And it does not tell you if the work is causing traffic to slow or stop. A shoulder closure is reported the same way as a full roadway closure with detour. Yet one does not affect traffic at all while the other may affect travelers’ choice of routes.

His point is that by reporting these changes as they occur it gives drivers the opportunity to avoid the area altogether. But the information must be posted as the changes occur and it must be accurate. If it is, drivers will learn to depend on it and change their routes. But if they get erroneous or inaccurate information, they will continue to drive along their intended path.

Ross finished by listing the details that are important to navigation apps, and this applies to current apps as well as future autonomous driving systems.

  1. Work zone status: scheduled versus equipment on sight and ready to work versus workers present.
  2. Map changes including lane shifts, capacity reductions of any kind, or roads closed.
  3. Queue details including slow or stopped traffic, delay times, early or late merge systems, and location of merge point.
  4. Presence of active flagging operations including location.
  5. Presence and location of attenuator trucks, especially when the attenuator is in the down or active position.

These are all details a system will require to make informed routing recommendations. And if the work does cause significant impacts, we prefer they avoid the area altogether. It is safer and more efficient for everyone involved: travelers, contractors, and for the owner/agency.

Our industry can supply this information today. So please encourage system designers to engineer with that in mind. We can all avoid a future full of expensive, time consuming, and even dangerous problems by getting the word out now.

ATSSA Innovation Update

20160826_172236

 

The American Traffic Safety Services Association (ATSSA) Midyear meetings were held this year in Chicago, August 24th through the 26th. The Innovation Council meeting was especially interesting. Council Chairman Scott Covington along with several council members continue to work to make our voice heard in the automated & autonomous vehicle world (see August 1st post).

This year’s meeting included two great presentations. The first was by Lee Cole of Oldcastle Materials. Oldcastle is a large road building contractor with operations throughout North America. They suffered a series of work zone crashes that injured and even killed their workers and Mr. Cole was charged with finding a way to mitigate work zone intrusions.

The result is a system they call AWARE: Advance Warning & Risk Evasion. It was developed by the military to reduce casualties from roadside bombs and shoulder fired rockets. But the same tracking software was adapted to track vehicles approaching the work zone and through several complicated algorithms, determine if those vehicles would pass by safely, or if they might travel into the work area.

They are testing the system with eight paving crews this summer and hope to expand the program soon.  The system appears to be very cost-effective. And it is designed to avoid false alarms while  still giving workers time to get out of the way when intrusions do occur.

 

The second presentation was made by Jon Kruger, District Construction Director for Indiana DOT. Mr. Kruger began by saying his focus is on building roads. He didn’t know anything about work zone ITS systems a couple of years ago. But when they began work on several miles of I-94 near Chicago, he was asked to look at ways to mitigate impacts to traffic. They chose a queue warning system and it has worked out very well.

He now requires these systems on most of his paving projects. He said they do so 70% for safety and 30% for the data they generate. He said queue lengths are very unpredictable. He saw a big discrepancy between predicted queue lengths and actual. Volumes varied widely and alternate routes played a big role in that by drawing traffic away from the affected areas. They have even adjusted work windows when their real time data shows it is justified.

Neil Boudreau, the state traffic engineer for Massachusetts DOT agreed with Jon saying that they use the data they collect on each project to build a database. Eventually they will learn what happens when a certain type of project is performed on a particular route, or in a particular area. They then hope to have a more precise idea of when lane closures should be allowed and when they should not.

 

If you are involved in traffic engineering or with autonomous and automated vehicles, consider becoming involved with the ATSSA Innovation Council. They have become the point at which those two worlds interact with our work zone communityto make our roads safer.

Should driverless cars make life-or-death decisions?

An interesting article ran recently in Automotive News titled, “Should driverless cars make life-or-death decisions?” Author Keith Naughton asks some interesting questions and points out some of the difficult decisions engineers are now beginning to make. Read the short article at: http://www.autonews.com/article/20150625/OEM06/150629944?template=mobile .

This is not directly related to work zone ITS, but raises additional questions that most certainly are. When is it better for robotic cars to drive through a line of cones? Is it better to crash into a truck-mounted attenuator and risk injuring the operator? Or veer into a closed work zone where workers may be present?

The problem, as I understand it, is that the robots can’t go through a decision tree to decide what to do. As this video points out ( https://www.youtube.com/watch?v=IanxRZMIC-E ) there just isn’t enough time. Instead, programmers must build in the ability to react. The robot in the video hasn’t been taught when to grab the bar. Rather, it is taught how to react instead.

We will soon be enjoying significantly reduced fatality rates thanks to autonomous vehicles. But robots will now be making these decisions. In the past drivers involved in crashes were often tormented second guessing their split second decisions prior to the crash. Now we can make those decisions in advance in the way we program these systems. But they won’t always be easy decisions.

 

Work Zones and Automated Vehicles

I recently watched a recording of GTMA’s webinar “Automated Vehicles and Traffic Maintenance Zones”. First I would like to thank Rob Dingess for hosting this and Jerry Ullman of TTI for leading the discussion. It was very well done. They managed to move the discussion forward two or three steps.

Until now, the work zone safety industry has been concerned with getting the autonomous and driver assisted vehicle industries to consider how best to accommodate work zones. Mr. Ullman took the discussion to the next phase. He began by discussing the different levels of vehicle automation (0 to 4 with 4 being full automation). He says there will be new and often different challenges regarding work zones at each level. He took those problems we have all predicted and organized them in a way that will be far more valuable to the automotive industry.

If you haven’t seen this webinar I suggest contacting Rob at the GTMA (rdingess@usgtma.com ). I won’t try to repeat what he and Jerry said. But I would like to touch on a few interesting points they made. Jerry said,

“there may be a need at Level 2 for a mechanism to disengage lane keeping and tracking upstream of the work zone”

That led me to thinking about the hand off from automated driving to manual control and the complexity of work zones. We don’t want to suddenly hand over control to the driver just as everything changes. I suspect most drivers need a little time to get re-acclimated to driving before we begin throwing confusing lane shifts or detours at them. For this reason, especially at Level 2, we should consider placing the trigger for the hand off well upstream, perhaps 4 or 5 miles when possible. If we do it last minute, drivers who suddenly find themselves in control will make more mistakes than they do today.

You may have already considered this, but it occurred to me that at some point in the future we will have vehicles on our roads at the same time with all five levels of automation. Older vehicles will still be driven manually (level 0). Google cars will be driving fully automated. And there will also be cars at levels 1 through 3. Our work zones must accommodate all of them safely and efficiently.

After the presentation Rob asked an interesting question,

“What will happen with traffic control plans? Will they be created and then communicated to vehicles?”

Jerry felt that traffic control plans can never be made precisely enough and in sufficient detail to be perfect when they are implemented. He says that information must come from the field. This is a very important distinction. The automated vehicle world, especially Google, imagines everything controlled by a central data base. They naturally assume work zones would be done the same way. But we all understand that no plan is ever perfect. It must be adapted to local conditions. For this reason he says this information will always have to come from the field. We will have to find some way of doing that while still providing some form of verification and oversight.

Thanks again to Rob Dingess and Jerry Ullman for this webinar. It really did move the conversation forward. We look forward to more good discussions from them very soon!