Drivers Recognize the Importance of Connected Work Zones

We have been talking for the past couple of years about “connected work zones” – that is, the automatic and real-time method of putting our work zones on the digital map that everyone is quickly coming to depend upon when choosing a route.

We have argued that traffic control workers don’t need more to do when they are setting up or tearing down a work zone. So, to arrive at a point where we have timely and accurate reporting of work zones, it must happen automatically.

Several companies are now providing solutions. Those solutions vary in their complexity and technologies involved. But in their simplest form they each include a device attached to existing traffic control devices. One of those is normally the arrow board. The beauty of this approach is that when the arrow board is turned on, the system immediately tells the digital map that a work zone just popped up on that route at that precise location. And when it is turned off, it tells the map that the work zone is now gone. It happens every time a “smart” arrow board is used and those are becoming more and more common.

We all “get” this. But now the driving public is also recognizing the importance of these systems. An article by Tim Harlow in the January 27th Minneapolis Star-Tribune talks about a system supplied by Street Smart Rentals to Minnesota DOT in the Twin Cities.

He points out that the existing 511 system does a good job of informing the public about long-term projects, but that short-term and unplanned closures can cause just as much disruption yet are not included in their warnings to the public.

The system supplied by Mike Granger and Street Smart Rentals is changing that for the better. And with the arrival of autonomous vehicles, this will become even more important. In the article Brian Kary, MnDOT’s Director of Traffic Operations “said the technology is not active now, but it could be this summer or fall. MnDOT is evaluating costs before making it a permanent 511 feature. The agency also is setting up a timeline install the technology and figuring out how best to get information to other traffic information sources, such as Google, Waze and TomTom, since not everybody uses 511.”

We believe economies of scale will quickly and significantly reduce those costs. And the need for this information will bring down any barriers to those traffic information sources. We look forward to hearing more about this system and others like it the exciting year to come.

Automated Vehicle Roundtable Held at ATSSA Midyear Meetings

The American Traffic Safety Services Association (ATSSA) recently concluded their annual Midyear meetings in Williamsburg, Virginia. Their Innovation Council met on August 23rd. But before the meeting began officially, they held a joint round-table discussion with members of the Automotive Safety Council. The ASC represents manufacturers of automotive safety system components including cameras, LIDAR, radar and other sensors.

The ASC led off by presenting a sort of Automotive Sensors 101 class that explained the different technologies, what they do well, and what they don’t do so well. This was a big help to ATSSA members who must design traffic control devices that these sensors will be able to “see” and react to in the very near future.

Cameras used for lane tracking look out about 500 feet on highways with a viewing angle of 40 to as much as 100 degrees. The viewing distance decreases on city streets while the viewing angle increases. As camera technology improves, they plan to hold the lane keeping range to 150m as there is little benefit to extending it. Instead they will widen the field of view to better detect pedestrians, balls rolling into the street, etc.

Cameras currently see black & white (gray scale) and red. White lane markings are much easier for cameras to see than yellow because white has far better contrast.

The ASC maintained (as we do) that digital maps must be updated in real time. Long term work zones are easy enough to include in digital maps. Short term work zones are more of a problem. And chip seals are the worst as they are short term AND include no pavement markings – just chip seal markers.

As we move from level 3 to 4 and 5 automotive system hardware won’t change much. It will probably decrease in price, but that’s all. Rather the system functionality and human-machine language will be the key differentiators. The algorithms used by the vehicle to decide what is important, what is not, and how the vehicle should react will constantly evolve and improve.

The ASC shared their market forecast for growth in the next few years. In 2020 the first level 5 vehicles will be sold. Level 2 (driver assist) vehicles will total about 13 million vehicles. By 2030 more than 90 million vehicles will have at least level 2 automation and level 5 will total nearly 3 million vehicles. But that means less than 5% of all vehicles on the road in 2030 will be level 5.

There are still very different approaches to level 3 automation. At level 3, vehicles will automatically center in their lanes, follow a route and stop when required. But unexpected conditions, such as work zones, causes the vehicle to return control to the driver. Some manufacturers see level 3 as a step toward levels 4 and 5. But others, especially Google, feel level 3 is dangerous and so will not produce cars requiring human control at any time. Level 3 peaks in 2025 at 2 million vehicles then drops as level 4 and 5 vehicles become more popular and available.

The ASC group told us control will be ceded in work zones. But how that will happen is not clear. Still, they agreed with us on the need for sufficient time for the driver to acclimate before having to make important decisions.

Once the ASC concluded their presentation, Scott McCanna of David Evans & Associates made a presentation from our industry perspective and asked several thought-provoking questions about work zones along the way.

When channelizing devices including cones, drums and delineators are used to redefine a lane, will device spacing become important for automated vehicles? Will we need to maintain some minimal spacing to hold CAVs attention? And what happens when one or two cones are knocked down? Will the automated vehicle become disoriented? Or revert to the old lane markings?

It was further suggested than CAV logic should see drums and cones as a higher priority when choosing a direction of travel than existing pavement markings. Drums, cones, etc. should indicate a change…perhaps one that automatically triggers driver control in the case of Level 3 CAVs.

The time went by very quickly and everyone agreed it was a great first step in building better understanding between our two industries. Future meetings are already planned to build on this and plan for our future.

 

National Dialogue on Highway Automation

Being the work zone data nerds that we are, we attended the National Dialogue on Highway Automation Workshop #2: Digital Infrastructure and Data held August 1st and 2nd in Seattle. The first workshop covered planning and policy. Workshop #3 focuses on freight. #4 is Operations and is held at the same time as the National Rural ITS meeting in Phoenix. The final workshop will be held late this year in Austin and will be more technical in nature as it covers infrastructure design and safety.

Each workshop includes a series of presentations followed by breakout groups where ideas are discussed and then shared with the larger group. The format works well and benefits from the input of a wide range of stakeholders.

You will be happy to hear that work zones came up early and often. In fact the opening comments used work zones as an example of the need for some sort of standardization as every agency now provides varying amounts of data, different types of data, different formats and a very wide range of detail. Another speaker called work zones the “low hanging fruit” for highway automation in general and data collection and dissemination in particular.

There were about 200 in attendance and maybe 30 raised their hands when asked who attended the Automated Vehicle Symposium last month in San Francisco. So, this was an almost entirely new group.

You should also know the FHWA is seriously committed to this process. They had 20 or 30 of their own people at this event running it, moderating the breakout sessions, and asking lots of questions.

There were a number of themes that jumped out at us. One was data quality and verification. The consensus was that state DOTs will probably have the responsibility of verifying data accuracy. But what that process might be is unclear. It will likely vary by data type. In our case it will probably come as a quality check after it is already posted. Work zone activity must be reported in real time to be actionable, so they will weed the inaccurate reports (and reporters) out after the fact.

Remarkably most in the room were well acquainted with the MUTCD. Multiple comments suggested that it needs to be revised to recognize automated vehicles. Some even suggested reducing the leeway states have in specifying sign formats, pavement marking details, etc. to create more consistent traffic control for CAVs. But later others pointed out this is unlikely to happen and the effort would be better spent doing this outside the MUTCD process, at least to begin with.

These two days were time well spent. If you are able, we strongly encourage you to participate in one of their future workshops, especially the event in Phoenix. It will be focused on traffic operations. But because it will be held in conjunction with the NRITS show, it will also spend more time on automated vehicles and rural roads.  Learn more HERE.