New Open Source AV Visualization Tools May Aid Our Industry

One of the challenges the roadway safety infrastructure industry faces in regard to autonomous vehicles is understanding how those vehicles visualize the world they are passing through. Manufacturers have been restrained in their sharing of that information. The best we can get out of them is “Keep doing what you are doing to make striping, signing and traffic control devices easier to see.”

But a story published yesterday in The Verge by Andrew Hawkins details efforts by GM Cruise and Uber to make some of those visualization tools open source and free to use. It is even provided in a fairly simple and easy to use format that anyone can use on most any device.

 

This could be very useful for pavement marking manufacturers or contractors. It may be helpful for sign manufacturers. And it will definitely help traffic control device manufacturers understand what the vehicle “sees” and what it does not.

Now this is far from the ultimate testing platform, but it will help our industry begin to develop an understanding of the underlying issues and ways we may be able to address them. It may also help work zone ITS providers in that it offers a simple data formatting system that may be able to accommodate data feeds from smart work zones.

The GM Cruise tool is called “Worldview” and can be found HERE.

The Uber tool is called “Autonomous Visualization System” or AVS for short and can be found HERE.

We haven’t spoken with anyone who has used these tools yet. So, please try them out and tell us what you think. Are they useful to our industry? And, if so, how? What can be improved? We look forward to hearing from you!

 

Drivers Recognize the Importance of Connected Work Zones

We have been talking for the past couple of years about “connected work zones” – that is, the automatic and real-time method of putting our work zones on the digital map that everyone is quickly coming to depend upon when choosing a route.

We have argued that traffic control workers don’t need more to do when they are setting up or tearing down a work zone. So, to arrive at a point where we have timely and accurate reporting of work zones, it must happen automatically.

Several companies are now providing solutions. Those solutions vary in their complexity and technologies involved. But in their simplest form they each include a device attached to existing traffic control devices. One of those is normally the arrow board. The beauty of this approach is that when the arrow board is turned on, the system immediately tells the digital map that a work zone just popped up on that route at that precise location. And when it is turned off, it tells the map that the work zone is now gone. It happens every time a “smart” arrow board is used and those are becoming more and more common.

We all “get” this. But now the driving public is also recognizing the importance of these systems. An article by Tim Harlow in the January 27th Minneapolis Star-Tribune talks about a system supplied by Street Smart Rentals to Minnesota DOT in the Twin Cities.

He points out that the existing 511 system does a good job of informing the public about long-term projects, but that short-term and unplanned closures can cause just as much disruption yet are not included in their warnings to the public.

The system supplied by Mike Granger and Street Smart Rentals is changing that for the better. And with the arrival of autonomous vehicles, this will become even more important. In the article Brian Kary, MnDOT’s Director of Traffic Operations “said the technology is not active now, but it could be this summer or fall. MnDOT is evaluating costs before making it a permanent 511 feature. The agency also is setting up a timeline install the technology and figuring out how best to get information to other traffic information sources, such as Google, Waze and TomTom, since not everybody uses 511.”

We believe economies of scale will quickly and significantly reduce those costs. And the need for this information will bring down any barriers to those traffic information sources. We look forward to hearing more about this system and others like it the exciting year to come.

How Does the Traffic Message Channel Work?

We’ve talked in the past about the need to update the work zone information on digital maps in real time. But how does that process actually work? The answer is surprisingly simple while offering far more detail than you might expect. It is sent over FM radio and satellite channels using RDS-TMC protocols. RDS stands for “radio data system”. TMC stands for “traffic message channel”.

The information is sent in very small packages several times a second within a frequency used for digital identification of the station, song titles, etc. In this way, location codes and event codes are sent without interrupting the audio and updates any navigation devices in very near real time. That information can then be used in calculating the fastest route. It will also recalculate as incidents occur that cause significant delays.

In the United States the digitally coded traffic updates are distributed by Navteq over FM channels and by Sirius/XM satellite radio. iHeartMedia and TeleAtlas also provide commercial services in about 77 US metro areas.

Once received, the codes are automatically displayed in the driver’s preferred language making them more readily understandable and therefore more effective.

Each incident is digitally coded and sent as a TMC message. Each message consists of an event code, location code, expected incident duration, and other pertinent details. The message includes one or more phrases describing the problem. The first portion states the problem and the second portion gives clarification regarding the types of vehicles affected, recommended actions by the motorist, etc.

As you might expect, there are many work zone related messages. In fact, there are more than 150 work zone specific messages as well as many hundreds of messages just focused on queue length, travel delays, and lane closures. The work zone messages get fairly specific: mentioning pavement marking, resurfacing, bridge work, water main work, etc. They even mention temporary signals in one.

There are also many messages about incidents, weather, and special events.

The RDS-TMC system was developed before wide-spread use of GPS. So, they do not use a lat and long to identify the location. Instead location is described in relation to major intersections and points of interest.

As work zone reporting becomes more sophisticated, codes can still be added to provide additional detail such as the lanes that are closed, the length of the closure, expected delays, and more. Only a little more than half of the code capacity has been used so far. So there is plenty of room to grow. And that is important. Because autonomous vehicles will require far more detail. Discussions are already underway regarding what new details must be included and the formatting, etc. for them.