Alternative Funding for Work Zone ITS Fact Sheet

Nearly everyone who understands work zone ITS knows it is a cost-effective way of mitigating the traffic impacts of major and sometimes even minor road construction projects. Studies have proven the value of these systems. But DOTs will often tell you they don’t have the funding to pay for it.  The FHWA encourages states to use work zone ITS. They will pay for these systems through conventional construction funding. So, when states say they don’t have the funding they mean they haven’t found a pot of money outside of the money they use for asphalt and concrete.

FHWA wants to address that problem. They have just published the “Alternative Funding for Work Zone ITS Fact Sheet”. In it they document how Illinois uses HSIP funds to pay for Work Zone ITS. Download a copy of the fact sheet HERE.

FHWA says this is a highly underutilized funding mechanism. According to the fact sheet, “While some states use HSIP funds for work zone purposes, many state DOTs do not tap into this resource. Out of the more than 4,000 HSIP projects referenced in the 2016 HSIP National Summary Report, only 13 were work zone-related projects.”

Work Zone ITS Blog addressed the efforts of Matthew Daeda and Illinois DOT on May 12, 2016. We told you that this contracting method offers several advantages:

  1. The state only pays when the system is needed.
  2. They work directly with the vendor and that greatly improves communication.
  3. Staff has direct access to the system data and to make changes.
  4. By bidding for each district local companies are more likely to win, thus reducing response time.

 

This fact sheet is a BIG deal! States are always saying they don’t have the funding. This is one way of getting it. And the Feds aren’t just allowing this. They are encouraging states to use HSIP funds for work zone ITS.

States do need to identify work zone safety as a SHSP Focus Area and provide the data to support that decision. According to the National Work Zone Safety Information Clearinghouse, there were 799 fatalities in US work zones in 2017, up from the previous three-year average of 764. That’s not much when compared to the total roadway fatalities of 37,133.

But work zones are always a safety issue. States can and should include them in their Strategic Highway Safety Plans (SHSP) for a variety of reasons. Work zones force drivers to process more information and react faster than they normally do outside of work zones. That’s why crashes attributable to distracted driving, speeding, aggressive driving, and impaired driving often show up first in work zones. Furthermore, solutions that work in work zones may have applications elsewhere.

In 2017 overall fatalities declined nationally while work zone fatalities increased. Any state with this same disparity should include work zones in the SHSP. Many states have recently increased funding for road construction. They, too, will unfortunately see an associated increase in work zone fatalities. And, again, they to should include work zones in their SHSPs.

This is a wonderful tool. Thank you to Todd Peterson and Jawad Paracha for putting it together. Now we all just need to get his in front of the decision makers in our states!

 

Required Operator Training for Autonomous Vehicles?

We have talked here in the past about the difficulties autonomous vehicle drivers (operators?) will have acclimating when control of their vehicles is handed back to them, such as when they approach a work zone. Studies with simulators have shown a need for anywhere from 4 to 14 seconds for a driver to get a full grasp of all of the relevant external factors they must consider as they begin to drive.

A recent article in Axios Autonomous Vehicles points out that aviation has made use of automation for some time now. And they, too, understand the problem of moving from automated to human operators. In aviation, training focuses on that hand-off. Pilots are drilled in flight simulators on a variety of potential problems. So, when they encounter that problem during a real flight, muscle memory takes over and they react quickly and correctly.

The recent 737 Max 8 crash further underlines the importance of that training. It was apparently not included and that may have contributed to the pilot’s difficulty in regaining control.

The difference between aviation and autonomous vehicles is that training is mandatory for all pilots. If you fly a 767 you must stay current in all 767 training. However, for vehicles, a big selling point is that drivers no longer have to drive. They are told they can act more as passengers – gazing out the window, catching up on work, or watching an endless variety of streaming entertainment. Getting from that idea to one of mandatory training is a very long stretch!

Adding to the problem are the very different ways automakers are designing the machine-to-human hand-off. Each one is different.

In the Axios article, they quote Steve Casner of NASA, “We’re terrible at paying attention — and we think we’re awesome at it” Mr. Casner argues that drivers will need training. And they will need continuous updates to that training in order to learn how to deal with automation. Without initial user training and frequent refresh classes drivers will quickly become complacent.

This is a new topic of discussion but one that we must have to make CAVs safe for work zones and other segments of roadway with changing conditions.

New Open Source AV Visualization Tools May Aid Our Industry

One of the challenges the roadway safety infrastructure industry faces in regard to autonomous vehicles is understanding how those vehicles visualize the world they are passing through. Manufacturers have been restrained in their sharing of that information. The best we can get out of them is “Keep doing what you are doing to make striping, signing and traffic control devices easier to see.”

But a story published yesterday in The Verge by Andrew Hawkins details efforts by GM Cruise and Uber to make some of those visualization tools open source and free to use. It is even provided in a fairly simple and easy to use format that anyone can use on most any device.

 

This could be very useful for pavement marking manufacturers or contractors. It may be helpful for sign manufacturers. And it will definitely help traffic control device manufacturers understand what the vehicle “sees” and what it does not.

Now this is far from the ultimate testing platform, but it will help our industry begin to develop an understanding of the underlying issues and ways we may be able to address them. It may also help work zone ITS providers in that it offers a simple data formatting system that may be able to accommodate data feeds from smart work zones.

The GM Cruise tool is called “Worldview” and can be found HERE.

The Uber tool is called “Autonomous Visualization System” or AVS for short and can be found HERE.

We haven’t spoken with anyone who has used these tools yet. So, please try them out and tell us what you think. Are they useful to our industry? And, if so, how? What can be improved? We look forward to hearing from you!

 

Drivers Recognize the Importance of Connected Work Zones

We have been talking for the past couple of years about “connected work zones” – that is, the automatic and real-time method of putting our work zones on the digital map that everyone is quickly coming to depend upon when choosing a route.

We have argued that traffic control workers don’t need more to do when they are setting up or tearing down a work zone. So, to arrive at a point where we have timely and accurate reporting of work zones, it must happen automatically.

Several companies are now providing solutions. Those solutions vary in their complexity and technologies involved. But in their simplest form they each include a device attached to existing traffic control devices. One of those is normally the arrow board. The beauty of this approach is that when the arrow board is turned on, the system immediately tells the digital map that a work zone just popped up on that route at that precise location. And when it is turned off, it tells the map that the work zone is now gone. It happens every time a “smart” arrow board is used and those are becoming more and more common.

We all “get” this. But now the driving public is also recognizing the importance of these systems. An article by Tim Harlow in the January 27th Minneapolis Star-Tribune talks about a system supplied by Street Smart Rentals to Minnesota DOT in the Twin Cities.

He points out that the existing 511 system does a good job of informing the public about long-term projects, but that short-term and unplanned closures can cause just as much disruption yet are not included in their warnings to the public.

The system supplied by Mike Granger and Street Smart Rentals is changing that for the better. And with the arrival of autonomous vehicles, this will become even more important. In the article Brian Kary, MnDOT’s Director of Traffic Operations “said the technology is not active now, but it could be this summer or fall. MnDOT is evaluating costs before making it a permanent 511 feature. The agency also is setting up a timeline install the technology and figuring out how best to get information to other traffic information sources, such as Google, Waze and TomTom, since not everybody uses 511.”

We believe economies of scale will quickly and significantly reduce those costs. And the need for this information will bring down any barriers to those traffic information sources. We look forward to hearing more about this system and others like it the exciting year to come.

How Does the Traffic Message Channel Work?

We’ve talked in the past about the need to update the work zone information on digital maps in real time. But how does that process actually work? The answer is surprisingly simple while offering far more detail than you might expect. It is sent over FM radio and satellite channels using RDS-TMC protocols. RDS stands for “radio data system”. TMC stands for “traffic message channel”.

The information is sent in very small packages several times a second within a frequency used for digital identification of the station, song titles, etc. In this way, location codes and event codes are sent without interrupting the audio and updates any navigation devices in very near real time. That information can then be used in calculating the fastest route. It will also recalculate as incidents occur that cause significant delays.

In the United States the digitally coded traffic updates are distributed by Navteq over FM channels and by Sirius/XM satellite radio. iHeartMedia and TeleAtlas also provide commercial services in about 77 US metro areas.

Once received, the codes are automatically displayed in the driver’s preferred language making them more readily understandable and therefore more effective.

Each incident is digitally coded and sent as a TMC message. Each message consists of an event code, location code, expected incident duration, and other pertinent details. The message includes one or more phrases describing the problem. The first portion states the problem and the second portion gives clarification regarding the types of vehicles affected, recommended actions by the motorist, etc.

As you might expect, there are many work zone related messages. In fact, there are more than 150 work zone specific messages as well as many hundreds of messages just focused on queue length, travel delays, and lane closures. The work zone messages get fairly specific: mentioning pavement marking, resurfacing, bridge work, water main work, etc. They even mention temporary signals in one.

There are also many messages about incidents, weather, and special events.

The RDS-TMC system was developed before wide-spread use of GPS. So, they do not use a lat and long to identify the location. Instead location is described in relation to major intersections and points of interest.

As work zone reporting becomes more sophisticated, codes can still be added to provide additional detail such as the lanes that are closed, the length of the closure, expected delays, and more. Only a little more than half of the code capacity has been used so far. So there is plenty of room to grow. And that is important. Because autonomous vehicles will require far more detail. Discussions are already underway regarding what new details must be included and the formatting, etc. for them.

Is There an Ideal Sensor Location?

Are there “perfect” sensor locations? For example, when we deploy a queue warning system, are there sensor locations that will get us better data? Could that data inform us of slowing traffic sooner? Or could it be a better indication of traffic conditions than data from another location would be?

For end-of-queue warning systems we submit that the ideal sensor location is just upstream of where queuing is most likely to begin and, therefore where average speeds vary most.

There are locations like that throughout the work zone. Narrowing of lanes, lane shifts, temporary concrete barrier, bridge falsework and other construction activities affect drivers sense of safety. Anything that negatively affects that feeling of comfort will reduce the 85th percentile speed.

Short on-ramps with reduced merge distance have the same affect. However, if traffic always quickly accommodates those merges and returns to the previous 85th percentile speed, then that is not a perfect location. Only when the geometry in combination with traffic volume results in dynamic queuing does that become a good sensor location for queue warning systems.

The power source is our greatest limiting factor today.  Batteries, solar systems, etc. take up space. They must be located where we can reach them easily for maintenance. For this reason, many sensors are located on message signs and arrow boards where they can draw power from them and even share communications devices.

Arrow boards are placed at the taper. Queuing begins there, of course. But we will only catch speed variance due to conflicts at that merge point. We won’t see if that variance continues upstream.

Message signs are placed in advance of the work to warn of slowing downstream. We should always place one sensor at a point that queuing would reach as a result of a worst-case scenario. And a message sign location may be able to serve both purposes. But we normally want the sensors located where queuing begins and we want the message signs located upstream to warn of that slowing – not located together. If sensors and message signs share the same locations they are likely either too close to the work zone or too far from the source of the queuing to warn traffic before they reach the problem area.

We generally space sensors out every half mile to a mile apart with the understanding that we will learn about any queuing quickly. And that is a good approach. After all, we can’t predict all causes of queuing. But couldn’t we adjust those locations a little one way or the other to catch these obvious causes of slowing a little earlier?

It would be helpful to see research into sensor location. But in the meantime, let’s evaluate our work zones and adjust our sensor locations to monitor the more obvious sources of slowing. Our systems will perform better and improve work zone safety even more than they do today.

Final Report on Every Day Counts 3

USDOT has published their final report on the activities included in Every Day Counts 3. That included the promotion of work zone ITS. We talked about their efforts in past posts (10/27/14 and 12/14/16 ) and applauded both their efforts and the results, but now we can look at the final numbers. Read the report HERE.

When they began in January 2015 there were 7 states that had already made the use of technology to reduce work zone traffic impacts a mainstream practice. 8 more states were in the assessment stage at that time. Bu December of 2016 – just two short years later – 11 included work zone ITS as a mainstream practice and 13 more had moved to the assessment stage – a 37% increase!

More important, those efforts are already bearing fruit. Wisconsin’s initial tests indicate a significant reduction in end-of-queue crashes. They are now working with a university partner to develop a queue warning system decision support tool to help project designers know when to include a system in their jobs.

Illinois DOT has awarded on-call contracts to provide work zone ITS system in three of its districts. They, too have studied the effectiveness of these systems. Once they finalize their research they plan to incorporate that in their future system deployments.

Massachusetts DOT “uses smarter work zone technology applications in all construction work zones that meet a specific impact level and a preset scoring criteria threshold.”

And New Jersey DOT developed scoring criteria for designers to use when determining whether work zone ITS should be included in a project. Work zone ITS was also added to its preliminary engineering checklist as a tool for mitigation of work zone impacts.

Thanks again to FHWA for their foresight and hard work on this. It was just the push states needed to get started in work zone ITS and is sure to save a great many lives in the years to come!